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ABSTRACT

Due to the rapid development of Electric vehicles (EVs) day by day as well as the global focus on mitigating 
the environmental pollution, a large portion of the world is growing interest on EVs. To ensure efficient driving 
performance, an advanced battery management system is required, incorporating State of Charge (SOC) 
techniques with high accuracy. SOC is similar to fuel gauge for EVs, which indicates the remaining capacity 
of battery. Researchers are actively working to develop more advanced method for stable and nearly 100% 
SOC estimation. Although many SOC estimation techniques have been developed, a significant research gap 
remains in addressing the limitations related to handling non-linear behaviors, sensor errors, data dependency, 
and the lack of physical feedback in practical scenarios. The main aim of this article is to review the literature 
of existing categories and mathematical model of SOC estimation. This paper also describes each method of 
SOC estimation in details with present drawbacks and positive aspects as well as provides an opinion which 
methods are best in various conditions.  
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1.	 INTRODUCTION

Currently whole world is concerned due to the use of high 
number of diesels, gasoline in vehicles which produces 
tremendous amount of carbon dioxide, sulfur dioxide, 
nitrogen oxide results in global pollution and fast change 
of climates. The transportation industry, which is largely 
concentrated in urban areas, emits more than 20% of 
total greenhouse gas emissions [1]. Another concerning 
portion is that, due to the use of high amount of fossil 
fuels which may lack in recent future [2].  To mitigate 
these issues, most of the countries are focusing on Electric 
vehicles (EVs) which is comparatively more environment 
friendly, and emits very lower amount of greenhouse gas 
[3]. To power up EVs, generally rechargeable lithium-
ion, lead acid and metal-nickel-hydride batteries are so 
much popular.  But these batteries have few drawbacks 
with several advantages. One of the disadvantages is 
over charging and over discharging reduce battery life 
sometimes may damage completely [4]. To solve this 
problem Battery Management System (BMS) as shown 
in Fig. 1 is introduced, which enhances battery life. The 

main function of BMS is to collect raw data of voltage, 
current, temperature, State of Charge (SOC), State of 
Health (SOH), State of Power (SOP), protects from over 
charging, over discharging, overheating and short circuit, 
cell balancing, and communication with External Control 
Unit (ECU) [5-8].

In this study, we will only focus on SOC estimation 
of battery. SOC is mainly responsible to protect the battery 
from over charging and over discharging. It defines as the 
ratio of remaining charge to the nominal capacity of the 
battery.  It generally expresses as percentage [9].

SOC = Current Capacity (Ah) × 100% (1)Total Capacity (Ah)

For Example, considering a half charged 12V 100 
Ah battery,

SOC = 50 × 100% = 50% (2)100

Accurate SOC estimation directly affects electric vehicles 
performance. Due to the parameter uncertainties, SOC 
estimation is not easy [10, 11]. A lot of research was 
already done for effectively SOC estimation. Researchers 



DUET Journal  	 80	 Volume 10, Issue 1, June 2025

A Comprehensive Study on the Existing Techniques of SOC Estimation of the EVs Battery

estimated SOC through following categories: Direct 
measurement, Book keeping, Filter based and Data 
driven. Direct measurement method utilizes physical 
properties such as voltage and impedance [12]. But it is 
more applicable during stable state condition of battery as 
well as is not an effective method. Book keeping method 
[13] is far better than direct measurement method. But due 
to the error of initial SOC estimation, Kalman filter family 

[14-16] is over popular. Few researchers estimated SOC 
through data driven category such as Neural Network 
[17], Fuzzy Logic [18], Random Forest [19] etc. But in 
this case for higher efficiency, enormous data collection 
is required. This article presents every existing method 
of SOC estimation. Lastly, the best method for SOC 
estimation is determined. 

Fig. 1: Simple Block Diagram of Battery Management System

2.	 BATTERY MODEL

Modeling helps us to understand the battery behavior that 
will help to improve the system performance and increase 
the system efficiency. Battery can be modeled to describe 
the V-I Characteristics, charging status and battery’s 
capacity. It is therefore necessary to create an exact 
electrical equivalent model that will help to determine the 
battery efficiency. There are different electrical models 
which will be discussed and examined along with the 
benefits and demerits. The mathematical relationship 
between the elements of Lithium-ion batteries and 
their V-I characteristics, state of charge (SOC), internal 
resistance, operating cycles, and self-discharge is depicted 
in a Lithium-ion battery model. The equivalent circuit 
model of a Lithium-ion battery is a performance model 
that uses one or more parallel combinations of resistance, 
capacitance, and other circuit components to construct 

an electric circuit to replicate the dynamic properties 
of Lithium-ion batteries. Time domain analysis is used 
to produce the most often utilized electrical equivalent 
models.

The battery model must reflect proper static and 
dynamic characteristics of the battery for the accurate 
estimation of SOC. 

(a) Rint Battery Model: Rint model (Internal Resistance 
Model) is a basic equivalent circuit, consists of internal 
resistance and ideal voltage source. It is also known as 
‘resistance in series’ model. This model design is simple 
and easy to implement. But it is able to capture some 
aspects of dynamic behavior of batteries in a limited 
sense and ignores hysteresis because of the absence of 
capacitance, which leads an inaccurate SOC estimation 
[20, 21].
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(b) Thevenin Battery Model: Thevenin model which 
is the combination of a parallel RPCP network with Rint 
model in series. It is also known as Single RC model. It 
is able to describe the polarization effect of the battery. 
It has a good controlling capability of dynamic behavior 
[21]. This model exhibits the abrupt and gradual changes 
of voltage during charging and discharging.

Polarization Behavior:

V t V e R e0 1 1RC RC R C
t

P R C
t

P P P P= + -
- -] ] ^g g h (3)

          

Dynamic Behavior:

V t V SOC IR V tOC RC0= - -] ] ]g g g (4)

Here, the series resistance R0 represents sudden 
change of resistance and parallel RPCP network is used 
to gradual voltage changes [22]. The CP partially corrects 
the hysteresis behavior. Higher the value of CP, lower the 
hysteresis behavior. 

(c) PNGV Battery Model: It is a nonlinear equivalent 
circuit model, which is preferred over Thevenin model 

Fig. 2: Battery Model 
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because it represents the complex battery dynamic behavior 
more accurately [20, 23]. PNGV model is the combination 
of Thevenin model and a bulk capacitor which is shown 
in Fig. 4. The bulk capacitor provides long-term charge 
storage effects, improving SOC estimation [21]. During 
transient phase, PNGV model can determine voltage at 
various SOC. This model is also able to capture both slow 
and fast dynamic response, which make it more applicable 
for hybrid electric vehicles. Another improved version 
of PNGV battery model is proposed, in which an extra 
parallel RPCP network is added in series with conventional 
PNGV model, to describe the cell polarization more 
accurately. Also, this improved version of PNGV model 
provides more accuracy than other models [24].

(d) Dual-polarization Battery Model: Dual-polarization 
(DP) model is more preferred for online SOC estimation 
[25]. This model is the improve version of Thevenin 
model. An extra parallel RPCP network is connected in 
series with the first RPCP network as shown in Fig. 5. To 
capture electrochemical polarization and slow diffusion 
and relaxation effects as well as higher accuracy 2RC is 
generally used over Thevenin model [21, 26]. Because of 
the higher-order RC model (3RC, 4RC etc.) calculation 
is comparatively complex, 2RC model is used more 
for battery SOC estimation, despite the slightly lower 
precision.

(e) Randle Battery Model: The Randle battery model is 
a mathematical representation which primarily focuses 
on battery impedance and electrochemical behavior. The 
battery or power source isn’t directly included with this 
equivalent circuit unlike previously mentioned battery 
models. The Randle model is shown in Fig. 2(e), where 
capacitive charge storage Cbulk represents SOC indicator, 
a high valued self-discharge resistance Rd is connected 
with Cbulk in parallel, parallel RPCP network indicates 
small time-constant electrochemical transitions, and R0 
is the internal resistance. The impedance of the battery 
is obtained through the Electrochemical Impedance 
Spectroscopy and based on the impedance value; all 
components of this equivalent circuit are chosen. This 
model was developed by targeting lead acid batteries [27]. 
The design of this model is pretty similar to Thevenin 
model but its accuracy to estimate SOC is comparatively 
lower. To analyze multiple transient responses, a large 
number of parallel RPCP networks can be added in series 
with the model [20, 28].

(f) GNL Battery Model: The GNL model contains 
the characteristics of Rint model, Thevenin model and 
PNGV model. Comparing other models, the battery 
SOC estimation accuracy, performance of charging and 
discharging process are higher of this model. But due 

to the high complexity in calculation and parameter 
selection, this model is not popular for real time SOC 
estimation [20, 29, 30].

3.	 SOC MEASUREMENT METHODS

3.1 	 Direct Measurement Methods

Based on the physical attributes of batteries, Direct 
Measurement Methods are classified as following 
categories-

(a) Open Circuit Voltage Method: Open Circuit Voltage 
(OCV) method refers to measure the potential difference 
across the two terminals of power source or circuit when 
no current flows. This method is more applicable when 
there is a direct relationship between open circuit voltage 
and SOC. 

Mathematically, open circuit voltage,

VOC (t) = a × SOC (t) + V0
(5)

Where, V0 is the lowest possible OCV, when SOC is 0% 
and  is the slop, which represents the change of OCV 
with respect to SOC. This linearity is generally observed 
in lead acid battery [31]. But all batteries don’t follow 
linearity such as lithium-ion batteries [32]. Also, this 
method gives reliable output when the battery is in stable 
state. To reach in equilibrium state, sometimes battery 
takes long time around two hours. It is impossible to wait 
for this long duration practically to SOC estimation [13]. 
Another demerit is the OCV method is heavily influence 
by the cell ambient temperature [33]. 

(b) Terminal Voltage Method: Terminal voltage 
method which considers internal resistance (Rint) during 
discharging. Due to the internal resistance, it differs from 
the OCV method [31]. 

Mathematically, terminal voltage,

Vt = VOC(t) + IRint
(6)

According to equation 5, OCV is proportional to 
SOC, similarly terminal voltage is approximately 
proportional to SOC. The main disadvantage is that due 
to sudden drop of battery voltage at the end of discharge 
the inaccuracy of terminal voltage is higher [34]. The 
output terminal voltage is also affected by temperature 
and to get the proper output, the system must be in 
equilibrium state.
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(c) Impedance Method: The impedance is measured 
through the ratio of voltage and current, which represents 
the capacity of battery. This method has high accuracy to 
estimate SOC at the end of discharging. But it is difficult 
to get correct internal impedance due to its milliohm range 
value. The impedance parameters are not identical, this 
is why this method is preferred for SOC estimation [13].

(d) Electrochemical Impedance Spectroscopy Method: 
According to the authors [35], the main principle of this 
method is to excite the steady state electrochemical system 
by using a small amplitude AC signal and measures the 
impedance spectroscopy through the ratio of fluctuating 
voltage and current. This impedance is generally used to 
estimate SOC indirectly [31].

3.2	 Book-Keeping Method 

Book-keeping is known as coulomb counting method. 
Coulomb counting is one of the easiest ways to estimate 
SOC which is shown in Fig. 3. In this case SOC is 
determined through the combination of initial value of 
SOC and the integration of current which flows in or out 
of the battery [36]. The charging and discharging state of 
battery is defined through the direction of the current.

During charging, 

%SOC SOC C
I

dt 100t
b

bct

0
0

#
h

= + c m# (7)

During discharging, 

%SOC SOC C
I

dt 100t
b

bdt

0
0

#
h

= - c m# (8)

To set the value of SOC0, generally the battery should be full 
charged, if possible, otherwise based on starting condition 
SOC0 is estimated through the test either open circuit or 
loaded voltage. The SOC is estimated correctly through 
this method for short term. In the case of long term, due to 
the lack of self-correction ability, this method is failed to 
provide proper estimation. With the number of charging 
and discharging cycle the error of SOC is increased. The 
researchers Ng et al exhibited that during 5th cycle the 
error is around 2.2% and this error reaches to 9% after 25th 
cycle [37]. This is why periodic recalibration is requires 
for reliable estimation of SOC. Another disadvantage is 
that this method isn’t count the issue of battery capacity 
due to aging by repeated charging and discharging, 
internal impedance as well as self-discharge of the 
battery, which lead an inaccurate SOC. Some groups of 
researchers already tried to enhance the coulomb counting 
efficiency. Two groups of researchers [38, 39] considered 

recalibration and self-discharge correction to enhance 
coulomb counting which depicts through the flowchart in 
Fig. 4. When the battery is at open circuit (Ib = 0), self-
discharging is occurred. Also, due to the over discharge 
and over charge, internal resistance is varied, which can 
affect correct SOC estimation. To remove this issue and 
for the safety of battery recalibration are introduced by 
them. Another researcher focused on internal resistance 
of battery and battery aging. To reduce the error of initial 
value of SOC, they combined open circuit voltage and 
the potential drop across the internal resistance as shown 
in equation 9. They also monitor battery capacity that is 
decreased with charging and discharging cycle.

At k-1 cycle, 

SOCt-1,k = VOC  ± (Ib×Rb, k-1) × 100%        (9) 

During Charging,

Similarly at cut-off voltage during discharging, 

At the K cycle, 

Coulombic efficiency, 

(12)

The battery capacity for charging, 

(13)

The battery capacity for discharging, 

(14)

The enhance coulomb counting methods are not completely 
capable for estimating SOC despite by removing issues of 
conventional coulomb counting method. These methods 
are unable to eliminate the sensors errors, which is one of 
the obstacles to correctly estimate SOC. For this reason, 
most of the researchers, battery management companies 
are currently shifting to Kalman filter family or Data 
driven methods.
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Fig. 3: Flowchart of Conventional Coulomb Counting Method
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3.3 	 Filter Based Methods

Filter-based methods estimate the state of the system 
from the perspective of noise elimination. The filter-
based approach, which combines a battery model with 
an iterative process of closed-loop SOC estimation, has 
been proven to be accurate and real-time achievable 
due to its low complexity. Compared with the state 
observer method, the filter-based method the filter-
based method has lower computational complexity 
and is easy to implement online SOC estimation. 
Moreover, compared to the state observer method, 
the filter-based method avoids the complicated proof 
process of the convergence performance. Therefore, 
the filter-based method is more suitable for the battery 
SOC estimation. 

(a) Kalman Filter: Kalman filter is a recursive estimation 
technique, which was developed by Rudolf. E Kalman 
in the 1950s. This method offers real time correction and 
also has excellent capability to handle noise and work in 
dynamic conditions capability that makes it more suitable 
for SOC estimation over coulomb counting method 
[40]. The summary of Kalman filter algorithm for SOC 
estimation is given in table I. 

Fig. 5 describes the SOC estimation using Kalman 
filter, where the temperature, current and voltage of 
battery pack are measured through the sensor. The 

estimated voltage obtained from the battery model and 
the difference between estimated voltage and measure 
voltage are the input of update step where Kalman gain 
is calculated [41]. As well as in this step, the SOC state is 
updated using state update equation.

Table I: Summary of Kalman Filter Algorithm for SOC 
Estimation [42, 43]

Initialization Step x̂0, P0

Measurement Step zk - Hx̂k
-, Hx̂k

-

Update Step
Kk = Pk

-HT(HPk
-HT +R)-1

x̂k = x̂k
- + Kk(zk - Hx̂k

-)
Pk = Pk

-(I - HKk)
Prediction Step x̂k

- = Ax̂k-1 + Buk-1 + wk
Pk

- = APk-1A
T + Q

Here, x̂0 = initial estimated SOC, P0 = initial error 
covariance,  zk = measured voltage (Sensor Output), Hx̂k

- 
= estimated Voltage, (zk - Hx̂k

-) = residual, Kk = Kalman 
gain, Pk

- = predicted error covariance, H = measurement 
matrix, R = measurement noise covariance,  x̂k

- = predicted 
SOC, Pk = updated error covariance, I = identity matrix, 
A = state transition matrix, x̂k-1 = previous estimated SOC, 
B = control matrix, uk-1 = previous control input (typically 
indicates battery current), wk = process noise, Pk-1 = 
previous error covariance, Q = process noise covariance. 

Fig. 5: Flowchart of Kalman Filter
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Kalman gain is high when the measurement is more 
reliable otherwise the value of Kalman gain is poor. If the 
gain is high, SOC estimation follows the sensor value as 
shown in equ. 17. On the other hand, if the gain is low, 
SOC estimation follows the predicted value as shown in 
equ. 18 [44].

(15)

(16)

(17)

(18)

The last step is the prediction step, where the SOC 
is estimated based on the previous SOC using State 
Transition Model with Gaussian noise and also predicts 
the error covariance.

But the Kalman filter is applicable for the linear 
systems [45] in which all noises and errors are strictly 
Gaussian. In reality, the battery is a non-linear dynamic 
system. During the driving on high hill, downhill, the 
SOC of battery wouldn’t be linearly changed. Even the 
noise of battery SOC estimation is non-Gaussian due to 
the temperature variation, aging effect, sensor inaccuracy 
etc. As a result, Kalman filter produces an inaccurate 
Kalman gain which generates wrong estimation of SOC 
[46]. 

(b) Extended Kalman Filter (EKF): This filter is 
introduced to handle the non-linearity of the system. It is 
the modified version of Kalman filter. Since the battery 
charging and discharging don’t follow the linear behavior, 
this extended Kalman filter is required to convert into 
linear behavior through state space model. Then Kalman 
filter is applied to obtain optimal estimation. 

Considering, a state space equation for SOC estimation 
[47],

xk+1 = f(xk,uk) + wk                               (19)

Measurement equation, 

zk = h(xk,uk) + vk                                  20)

To generate a linear approximation of non-linear function 
(f(xk, uk)), first term of Taylor series expansion is utilized 
[48]. 

where,   Jacobian of f with respect to xk

 Jacobian of f with respect to uk

where,  Jacobian of h with respect to xk

 Jacobian of h with respect to u

	
Simplifying equation 21 and 22, we get the linear system,

        (23)

         (24)

Here, xk = SOC value at time k, uk = charging and 
discharging current, wk = process noise, zk = battery 
voltage, vk = measurement noise, xk+1 = predicted SOC.

Now, through the Kalman filtering process more 
corrected SOC is estimated. But this extended Kalman 
filter sometimes fails to estimate correct SOC, when the 
battery plays highly nonlinear behavior.

(c) Unscented Kalman Filter (UKF): Unscented 
Kalman filter is considered as more advanced in Kalman 
filter family, which was introduced by Julier and Uhlman 
in 1997. Like EKF, the UKF doesn’t need to consider 
Jacobian matrix, convert into linearized from non-linear 
equation, which improves the accuracy of SOC estimation. 
Previously, researchers used this filter to estimate SOC 
[30, 42]. According to their research, a small set of sigma 
points is denoted by xi, which passes through the non-linear 
functions and a new mean and covariance are generated. 
These sigma points actually indicate the uncertain SOC. 
For example, the actual SOC is 60%, but sigma points will 
represent variables such as 63%, 59%, 58%, 61%, 60% 
etc. These points are calculated as-

             (25)
Where, i = 1, 2, ….., 2n                                                                 

Predicted mean, 

                        (26)
Predicted covariance, 

     (27)
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Estimated SOC update,

                      (29)

Error covariance update, 

                          (30)

Here,  = previous estimated SOC,  = dimension 
of state,  = scaling parameter,  = weight for the ith 
sigma points  = cross-covariance matrix,  = innovation 
covariance matrix,  = weight for covariance, Q = process 
noise covariance, R = measurement noise covariance.

But, the accuracy of SOC estimation through this 
method sometimes affected by initial values and system 
noise. This is why, Zhou et. al. [49] introduced a fading 
factor and an adaptive adjustment factor to minimize those 
issues. The modified version of covariance equations is 
shown below-                                                              

 (32)

           (33)

                             (34)

Here, S is fading factor and  is adaptive adjustment factor

3.4 	 Data Driven Methods

(a) Neural Network: Neural network is a very popular 
data driven approach for its higher accuracy, capability 
to handle non-linearity and real time SOC estimation. It 
consists of three layers- Input layer, Hidden layer, and 
output layer. Input layer receives real time data from 
sensors such as voltage (v), current (I), temperature (T) 
that are obtained from battery. Hidden layer builds a 
complex relation between input data and estimated SOC. 
It typically contains 1 to 3 layers. The last one is output 
layers which represents the estimated SOC. The input layer 
transmits the input variables with weights and without any 
computational complexity. On the other hand, the other 
two layers are responsible for processing the data through 
activation function [50, 51, 52]. 

Researchers already used various version of neural 
network such Back propagation neural network (BPNN), 
Recurrent neural network (RNN), Convolutional neural 
network (CNN) to estimate SOC. For example, Shuo Li, 
S. L. researchers [53] were estimated SOC by using BPNN 

with input of voltage, current and temperature of battery. 
BPNN consists of two phases: forward propagation 
and back propagation. After generating output of SOC 
through forward propagation and the difference between 
the output value and actual SOC value, the error is used 
as feedback to modify the weights and biases between 
neurons till to get proper SOC output value. Since BPNN 
has the excellent capability to handle the high non-
linearity, this is why another research group [54] used 
BPNN with duel EKF. Here they used duel EKF to get 
real time SOC which is justified by the BPNN. And the 
predicted error by BPNN is combines with the output of 
dual EFF to estimate correct SOC.

Another version of NN is RNN which is also used 
to estimate SOC. But RNN is able to remember most 
recent data due to the vanishing gradient issue. So, the 
advanced architecture of RNN, LSTM is preferred over 
traditional RNN, which mitigates the existing problem of 
RNN [55]. The architecture of LSTM consists of memory 
cell, and three gates- input gate, output gate, and forget 
gate. Input gate decides which new input variables such as 
voltage, current, temperature would be stored in memory 
cell through sigmoid and tanh activation function. Forget 
gate uses sigmoid activation function to erase irrelevant 
old data from memory cell that have less affect to estimate 
SOC. Based on output forget gate and input gate, memory 
cell is updated. Finally, the output gate determines output 
SOC from the memory cell [56]. S. Bockrath, A. R. 
researchers [57] used LSTM to estimate SOC and compare 
the accuracy EKF method. In their experiment, they used 
voltage, current and temperature of lithium-ion battery 
as input for LSTM NN model and the equivalent circuit 
model voltage is used as input for EKF model. And during 
dynamic operation LSTM performs better then EKF to 
estimate SOC. Another research team [58] used LSTM 
with extended input and constrained output (EI-LSTM-
CO model) during SOC estimation. Due to the highly 
non-linear behavior of the battery, most machine learning 
models are failed to figure out the relationship between 
input variables such as voltage, current, temperature with 
output SOC during real time operation. This is why, these 
models are unable to predict SOC properly with new input 
data. To increase the accuracy, they also used another 
input, average voltage, which alters more slowly compare 
to real time variables. Due to use to the extension of input 
of LSTM, they got less SOC error compare to LSTM-
RNN method with various datasets.
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Fig. 6: The structure of Neural Network 

Convolutional neural network (CNN) is also is a well-
known deep learning method for SOC estimation. The 
architecture of a CNN consists of several layers, including 
image input, convolutional, activation, pooling, flatten, 
dense, and output layers. The image input layer takes the 
input and passes it into the network. In this case, the inputs 
are the voltage, current, and temperature of the battery. 
The conventional layer was used to extract low-level 
features (trends or sudden changes) from the input data, 
followed by an activation layer (ReLU) which applies 
non-linear function to learn complex pattern. The output 
of activation layer goes to pooling layer to reduce the 
dimensionality of the data. Then flatten layer converts the 
feature maps into 1D which used as input of dense layer. 
In dense layer, the input is multiplied with weight matrix 
and a bias vector is also added. Finally, the output layer 
which is a single neuron predicts the SOC value [59]. 
For checking accuracy, an author group [60] also used 
loss function layer to calculate the error between actual 
SOC and predicted SOC. In their experiment, they got 
a little deviation between true SOC and predicted SOC. 
XIANGBAO SONG, F. Y.-L. [61] combined CNN with 
LSTM with the voltage, current, temperature, average 
voltage and average current of battery as input for 
increasing accuracy of SOC estimation. The output SOC 
is fluctuated and has a deviation from the true value of 
SOC while using only CNN method. But combination 
of CNN and LSTM, the output SOC is more stable and a 
very low deviation (2%) from the actual SOC of battery.

(b) Support Vector Machine (SVM): SVM is preferred 
to estimate state of charge for solving the high non-
linearity of the batteries through kernel function as well as 
its higher accuracy around 98%. SVM is generally used to 
handle vector problems and vector regression problems. 
Since, SOC estimation is a regression problem, this is 
why SVM for regression (SVR) algorithm is used. To 
estimates SOC through SVR a researcher group used a 
dataset where battery voltage, current and temperature are 
used as input to train the SVR model and SOC is used as 
ground truth to the model. The dataset is randomly divided 
into 10 equal-sized subsets to efficiently use of data. The 
basic SVR function to predict SOC is [62]-

                              (35)

where,  function maps the input feature (terminal voltage, 
current, temperature) into a higher dimensional space to 
capture the batteries dynamic behavior. 

To minimize the prediction error following objective 
function [63]-

                          (36)

The constraints are-

   

 (37)                                                                                

In equation 36, first term reduces overfitting to noisy 
voltage, current and temperature values and second 
term ensures the noises or errors are minimized in SOC 
prediction. The constraint equations 37 represent the 
estimated SOC stays in an acceptable deviation () from 
the actual SOC reading. To handle these constraints, 
Lagrange multipliers  are introduced.

To handle the non-linearity and establish a linear 
relationship, RBF kernel comes into play,

                                   (39)

For computational efficiency, the dual formulation is 
introduced instead of primal form. In equ. 36, where 
the weight , bias , slack variables  becomes ineffective 
for highly non-linear battery variables. This is why, the 
primal problem is transformed into dual form by applying 
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Lagrange multipliers which allows kernel function to 
replace the dot product  . The final predicted SOC through 
SVR function is-

                        (40)

Here, x is the new input data such as voltage, current, 
temperature.

(c) Fuzzy Logic: Fuzzy logic was developed by Lotfi A. 
Zadeh in the mid-1960s. It is preferred for SOC estimation 
because of less mathematical difficulties, well suited 
for dealing with uncertainties, and provides continuity 
in SOC values.  A simple block diagram of Fuzzy 
Logic Controller is shown in Fig. 07, which consists of 
Fuzzification, Decision Rules, Fuzzy Inference, and 
Defuzzification [64]. Fuzzification block takes voltage, 
current, temperature, required power etc. as inputs 
and converts into fuzzy sets (Ex: For voltage fuzzy set 
would be: “Low,” “Medium,” “High”). Every fuzzy set 
is connected with membership function. Decision Rules 
block considers as heart of the controller which consists 
of if-then rules that represent the relationship between 
crisp input and output SOC. The Fuzzy Inference is a 
computational unit that applies fuzzy rules to the fuzzified 
inputs and the Defuzzification generates the output SOC. 

Decision
Rules

Estimated
SOC

Fuzzy
Inference

Fuzzification

Crisp Input
(Voltage,
Current,

Temperature,
Power etc.)

Defuzzification

Fig. 7: Block Diagram of Fuzzy Logic Controller

A group of researchers [65] incorporated fuzzy logic into 
bi-directional equalization circuit to equally charging 
and discharging of each cell in a battery pack. They 
used the SOC difference of cells and modules as input of 
Fuzzification and also set start and stop threshold. Based 
on the threshold values the SOC equalization process 
starts and stops. Darsana Saji, P. S. [66] used fuzzy logic 
with coulomb counting method to enhance the accuracy 
of SOC estimation. In this case, the input of Fuzzification 
is SOC which comes from the coulomb counting method. 
According to their experiment, during charging only using 
coulomb counting the SOC error is around 13.8% and 
after incorporating fuzzy logic the SOC estimation error is 

3%. Similarly, during discharging, combination of fuzzy 
logic with coulomb counting method exhibits excellent 
accuracy.

(d) Random Forest: Random Forest is an ensemble of 
decision trees. Due to easy implementation and training 
with small dataset compare to RNN and CNN, first 
prediction, and lower overfitting risk random forest is 
preferred for SOC estimation of EVs’ batteries. According 
to Mohd Herwan Sulaiman, Z. M. [67] random forest 
follows eight steps during SOC estimation. Firstly, the 
real time data of voltage, current, battery temperature 
and ambient temperature are recorded in a single dataset 
with proper alignment. Secondly, around 87% of data of 
the dataset are used for training and remaining of them 
is used for testing. Then the model is configured and the 
training data are divided into 5 subsets. After that various 
number (25, 50, 75 and 100) of trees are used for trial with 
5 subsets. Based on the trial performance, 25 trees random 
forest architecture provides more balance accuracy and this 
architecture is used for model training. Finally, the model 
is evaluated and analyzed the result. According to the 
Chuanjiang Li, Z. C. research group [68], random forest 
regression (type of random forest) provides 0.5% less error 
compares to BPNN to estimate SOC. Similarly, another 
research team [69] founds small error to estimate SOC 
through random forest compare to ANN. But this model is 
unable to exhibit high performance with large dataset. 

The advantages and disadvantages of each category 
are shown in Table II.

4. 	 DISCUSSION

By reviewing each existing method of SOC estimation, 
we are clear that SOC estimation has shifted significantly 
toward data-driven and hybrid methods, as conventional 
techniques face limitations in real-time accuracy and 
adaptability. Earlier methods such as Open Circuit 
Voltage (OCV), Coulomb Counting, and even standard 
Kalman Filters were useful but often struggled with non-
linearity, sensor noise, and battery aging effects. This has 
led to a growing trend of integrating advanced filtering 
techniques (like EKF, UKF) with machine learning 
models for improved estimation accuracy.

Among the most prominent trends is the use of deep 
learning, particularly LSTM and CNN-LSTM hybrid 
models, which outperform traditional methods due to 
their ability to model non-linear dynamic behavior and 
extract time-dependent features from large datasets. 
The EI-LSTM-CO model, incorporating extended input 
and constrained output, has also gained attention for its 
enhanced accuracy in real-time applications. 
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Table II: Advantages and Disadvantages for Battery SOC Estimation Methods

Category Method Advantage Disadvantage

Direct 
Measurement

Open Circuit Voltage
•	 Simple and easy implementation
•	Good accuracy and low cost

•	Requires long time rest before measure
•	Gives wrong estimation during 

operation

Terminal Voltage
•	 Simple and easy implementation
•	Can be used in real time 

operation

•	 Sensitive current fluctuation
•	Output can be affected by internal 

resistance

Impedance
•	 Easy to implement
•	More accurate estimation than 

terminal voltage method

•	Accuracy is varied with temperature 
and aging

•	Difficult to find accurate impedance 
due to its lower value

Electrochemical 
Impedance 

Spectroscopy

•	Higher accuracy •	Requires complex equipment and high 
cost

•	Not suitable for real time application
•	Requires expert knowledge

Book Keeping

Coulomb Counting
•	 Simple and easy for 

implementation
•	Real time monitoring is possible

•	Decrease the SOC estimation accuracy 
due to the error of initial SOC

•	 Self-discharge and sensor errors aren’t 
counted

Enhance Coulomb 
Counting

•	Higher accuracy compared to 
conventional coulomb counting 
method

•	Doesn’t consider sensor errors
•	Calibration is required

Filter Based

Kalman Filter (KF)
•	Higher accuracy due to 

considering sensor errors
•	Comparatively more suitable 

for real-time operation

•	Not suitable for non-linear systems
•	Due to increase of state variable 

calculation time increases

Extended Kalman 
Filter (EKF)

•	 Suitable for non-linear system
•	Good balance between accuracy 

and complexity

•	Complex calculation
•	Due to increase of state variable 

calculation time increases
•	Unable to accurate SOC estimation for 

highly non-linear systems

Unscented Kalman 
Filter (UKF)

•	Handles highly non-linear 
battery system

•	 Lower complex calculation 
compares to EKF

•	 Sometimes accuracy is affected by 
initial values and system noise

Data Driven

Neural Network 
(NN)

•	Handles highly non-linear 
battery system

•	Higher accuracy and can 
improve overtime with more 
training

•	Doesn’t need to consider 
electrical and physical changes 
of battery

•	Able to estimate in both offline 
and online

•	Needs large dataset
•	During training high amount 

computational power is required

Support Vector 
Machine (SVM)

•	Higher accuracy
•	Able to work well with small to 

medium dataset

•	 Inflexible model
•	Greatly depends on kernel function

Fuzzy Logic
•	Doesn’t require complex 

mathematical model
•	Capable to handle uncertainty

•	 Less accuracy
•	 Performance depends on membership 

function & rule base

Random Forest (RF)
•	Good accuracy with small 

dataset
•	 Lower prediction time

•	 Performance is lower with large dataset
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Moreover, researchers are increasingly combining 
filter-based methods with neural networks to create hybrid 
models, aiming to reduce errors due to battery aging, 
environmental variation, and sensor inaccuracies.

Furthermore, SVM model and Random Forest 
model are trending as fast and efficient alternatives for 
small to medium datasets, especially where computational 
resources are limited. These models offer high prediction 
accuracy with less training time and are favored in 
embedded battery management systems.

Looking ahead, the research is trending toward 
hybrid approaches that fuse Enhanced Coulomb Counting 
techniques with neural networks or Kalman filters to 
adaptively learn from real-time data while correcting for 
accumulated errors. In our opinion, combining enhanced 
Coulomb Counting with CNN-LSTM or EI-LSTM-CO 
models presents a promising future direction. Such hybrid 
systems can utilize real-time SOC readings as feedback 
to continuously optimize the machine learning models, 
resulting in more robust, adaptive, and highly accurate 
SOC estimation frameworks suitable for commercial EV 
applications.

4.	 CONCLUSION

This article analyzed various methods of battery SOC 
estimation with battery models and identified higher 
accuracy approaches. Every researcher has tried to 
increase the accuracy of the SOC estimation by using 
various methods, both in the past and even today. 
Previously, SOC monitoring techniques are inefficient 
because of their limitations. But current techniques of 
SOC estimation are offering higher precision, which 
contributes to battery longer life as well as ensures more 
reliable vehicle performance. In near future, we will try to 
build a hybrid model that we previously mentioned, for 
getting more correct and stable SOC of EVs battery.
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